Remarks on a paper of Ballot and Luca concerning prime divisors of a f ( n ) − 1

نویسندگان

  • Paul Pollack
  • PAUL POLLACK
چکیده

Let a be an integer with |a| > 1. Let f(T ) ∈ Q[T ] be a nonconstant, integer-valued polynomial with positive leading term, and suppose that there are infinitely many primes p for which f does not possess a root modulo p. Under these hypotheses, Ballot and Luca showed that almost all primes p do not divide any number of the form a−1. More precisely, assuming the Generalized Riemann Hypothesis (GRH), their argument gives that the number of primes p ≤ x which do divide numbers of the form a − 1 is at most (as x→∞) π(x) (log log x)f , where rf is the density of primes p for which the congruence f(n) ≡ 0 (mod p) is insoluble. Under GRH, we improve this upper bound to x(log x)−1−rf , which we believe is the correct order of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

σ-sporadic prime ideals and superficial elements

Let $A$ be a Noetherian ring, $I$ be an ideal of $A$ and $sigma$ be a semi-prime operation, different from the identity map on the set of all ideals of $A$. Results of Essan proved that the sets of associated prime ideals of $sigma(I^n)$, which denoted by $Ass(A/sigma(I^n))$, stabilize to $A_{sigma}(I)$. We give some properties of the sets $S^{sigma}_{n}(I)=Ass(A/sigma(I^n))setminus A_{sigma}(I...

متن کامل

Some remarks on generalizations of classical prime submodules

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

Prime divisors of some shifted products

We study prime divisors of various sequences of positive integers A(n) + 1, n = 1,...,N, such that the ratios a(n) = A(n)/A(n − 1) have some number-theoretic or combinatorial meaning. In the case a(n) = n, we obviously have A(n) = n!, for which several new results about prime divisors of n! + 1 have recently been obtained.

متن کامل

On the Srnarandache Irrationality Conjecture

Here is an immediate proof in the following cases: 1. a(n) = n: 2. a(n) = d(n) =number of divisors of n; 3. a(n) = w(n) =number of distinct prime divisors of n: 4. a(n) = D(n) =number of total prime divisors of n (that is. counted with repetitions): 5. a(n) = dJ(n) =the Euler function of n: 6. a( n) = cr( n) =the sum of the divisors of n; 7. a(n) = Pn =the nth prime: 8. a(n) = 71(n) =the number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011